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Abstract

The rich online sources of food data has resulted in creation
of structured food knowledge graphs (FoodKGs) which have
been applied to various food computing tasks including food
recommendation. The recent advancement in large language
models (LLMs) have also led to their applications in rec-
ommendation systems. Despite several food recommendation
systems utilizing KGs, there is limited research on employ-
ing FoodKGs to enhance LLMs for food recommendation.
We propose food recommendation as question answer over
a large food knowledge graph by leveraging the power of
LLMs. Given a natural language question, the system extract
entities and retrieves subgraphs from the KG which are fed
into the LLM as context. The LLM then selects the recipes
that satisfy all the constraints in the question. In our approach
we fine-tune the LLM model to take in a question and the
relevant subgraph from a FoodKG, to recommends relevant
recipes. We also develop a benchmark dataset by curating
recipe related questions, combined with constraints and per-
sonal preferences. We show via extensive comparison that our
proposed LLM plus KG model significantly outperforms the
other state-of-the-art (SOTA) LLM models for food recom-
mendation.

Introduction

The importance of food for well being has created a need
for employing machine learning for understanding food for
a healthy lifestyle. Several online recipe sharing websites
created rich resources of food data, attracting researchers
to devise food computing methods from classification, re-
trieval, recipe generation to recommendation. Recommen-
dation systems have been designed to improve user expe-
rience, however food recommendations systems are critical
to human health and are more complex and multi-faceted.
An effective food recommendation system should consider
personal preferences, dietary constraints and health guide-
lines. In recent years, several food ontologies and knowl-
edge graphs were generated to better organize the food data
(Dooley et al. 2018; Haussmann et al. 2019; Razzaq et al.
2023). Subsequently, several food recommendation meth-
ods leveraged KGs for personalized food recommendation
(Chen et al. 2021; Shirai et al. 2021; Ling et al. 2022; Li,
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Zaki, and Chen 2023; Kobayashi et al. 2024). Most of these
approaches learn an embedding spaces for food recipes and
then consider the most similar recipes in the embedding
space as recommended recipes. One such method (Chen
et al. 2021) proposed food recommendation as a question
answering problem where they map questions and relevant
recipes into a common embedding space.

The rapid advancements in large language models
(LLMs) have driven efforts to optimize them domains like fi-
nance, medicine and food (Wu et al. 2023; Moor et al. 2023;
Mohbat and Zaki 2024; Chhikara et al. 2024). However,
these LLMs prone to hallucinations and outdated informa-
tion (Xu, Jain, and Kankanhalli 2024). Retrieval-augmented
generation (RAG) addresses these issues by providing con-
textual information to LLMs, leading to more accurate re-
sponses. The relevant context needs to be extracted from
large data sources such as from text documents by identify-
ing similar chunks of text or from knowledge graphs (KGs)
by retrieving relevant subgraphs (Wang et al. 2021; Banerjee
et al. 2023; He et al. 2024). The context retrieved as chunks
of text documents may be more noisy whereas subgraphs
may contains more precise information while also providing
the relations among entities. Therefore, recently attention
shifted toward utilizing KGs with LLMs to enhance their
performance (He et al. 2024; Rangel et al. 2024) specifically
for improving question answering over KGs, referred to as
KGQA.

KGQA is a challenging task that requires understanding
the natural language query, mapping it to the KG schema,
and generating a graph query that can retrieve the correct
answer from the KG (Shah and Tian 2024). LLM-based
KGQA is a crucial research area offering innovation and im-
provements in question-answering systems (Shah and Tian
2024). KGQA models either retrieve relevant subgraphs and
use reasoning to extract entities as answers (Wang et al.
2021), or use semantic parsing and thereby transform ques-
tions into SQL or SPARQL queries to get answers from the
KG (Banerjee et al. 2023). Some efforts explored power of
LLMs in zero or few shot setting (Taffa and Usbeck 2023;
Avila et al. 2024) to generate SPARQL queries based on se-
mantically parsed entities from a user question. However,
this method needs access to the training data or use propri-
etary LLM such as ChatGPT. Despite several efforts using
external knowledge (documents or KGs) with LLMs in sev-



SPARQL Query:
SELECT DISTINCT ?name ?recipe

WHERE {{ <— Foodtagparsing

?recipe rdfs:label ?name .
?recipe recipe-kb:uses ?ing .
?ing recipe-kb:ing_name ?ing_name .
FILTER (
regex(?ing_name, “ingr1”)

&& regex(?ing_name, “ingr2”) SUBEERT

&6 Iregex(?ing_name, “ingr3”)
)1}
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User question:

Give me low-protein recipes with baking soda,
tomato paste, green onions, ground
cinnamon, flour and without orange slice,
sweet rice flour, yellow cake mix, and that
include cholesterol within range (0, 0.07), salt

per 100g within range (0.14, 0.26).

|

_— LLM

Answer:

1. Aunt Peg's Banana Bread
2. Sweet Potato Casserole With Praline Topping
3. Fresh Apricot Praline Butter

Figure 1: System overview: Given a natural language question (with all constraints), the system parses entities and generates a
SPARQL query to retrieve a subgraph from the KG. The question and this subgraph as context, is then provided as input to the
LLM, which generates a list of recipe names that satisfy all the constraints in the question.

eral domains, there is a lack of work on food recommen-
dation using KGs and LLMs together while considering the
health constraints and user preferences.

This paper proposes to food recommendation as con-
strained question answer over the open-source FoodKG
knowledge graph (Haussmann et al. 2019). Our pro-
posed method improves food recommendation by leverag-
ing FoodKG as knowledge source and large language model
for language processing. Given a user question, the system
extract the entities to generate a SPARQL query to retrieve
relevant subgraphs from the KG, which are input to LLMs
as context along with the question. The overview of our pro-
posed method is shown in Figure 1. To evaluate our model,
first, we curated a benchmark dataset using questions from
templates and combined them with simulated constraints
and personal preferences. Next, we fine-tuned a large lan-
guage model that takes a question and a subgraph from
FoodKG as context, and recommends recipes that satisfy the
constraints in the questions. We show via extensive experi-
mental comparison that our proposed model outperforms the
SOTA LLM models for food recommendation, showcasing
the power of combining LLMs withe power of KGs. The
code and benchmark dataset will be made publicly available.

Related Work
Food Recommendation

Most existing food recommendation methods suggest
recipes based on various factors, such as recipe content, user
behavior, dietary constraints, or a combination of these as-
pects (Chen et al. 2020; He and Zhu 2021; Li and Zaki 2022;
Chen et al. 2023; Kobayashi et al. 2024). Initial food recom-
mendation systems formulated recommendation as a classi-
fication or matrix completion problem (Chen et al. 2018;
Salvador et al. 2017; He and Zhu 2021; Min et al. 2023).
Several methods employed embedding based methods (Wa-
hed et al. 2024; Li and Zaki 2022) by mapping recipe com-

ponents such as title, ingredients and images into a common
embedding space. During inference, these approaches use
similarity search to retrieve recipes similar to the user’s pro-
file.

Later focus shifted towards using food knowledge graph
(Li and Zaki 2022; Chen et al. 2023) or LLMs (Geng
et al. 2022; Kirk, van Eijnatten, and Camps 2023; Yang
et al. 2024; Rostami, Jain, and Rahmani 2024) for food
recommendations systems. By creating a benchmark QA
dataset, Chen et al. (2021) formulated food recommenda-
tion as knowledge base question answering through infor-
mation retrieval based method where they mapped natural
language questions and the possible answers into common
embedding spaces using LSTM. To utilize user-recipe in-
teractions in KGs for food recommendation, (Li and Zaki
2022; Gao et al. 2022) employed graph neural network based
approaches. However, recent methods employ LLMs for
food recommendations. Considering the popularity of Chat-
GPT to answering the questions, (Kirk, van Eijnatten, and
Camps 2023) investigated it for nutrition questions. Whereas
(Geng et al. 2022; Rostami, Jain, and Rahmani 2024) har-
ness LLMs as a Language Processing engine in food rec-
ommendation system. Despite considerable efforts to lever-
age Knowledge Graphs and Large Language Models for de-
veloping food recommendation systems, there remains lim-
ited research on integrating Food KGs to augment LLMs for
more personalized food recommendation. Specifically, in-
dividual preferences, health considerations, and nutritional
constraints within a unified framework has not been exten-
sively explored.

Question Answering Over Knowledge Graph
(KGQA)

Question Answering Over Knowledge Graph (KGQA)
refers to retrieving the knowledge from a KG to answer
the questions. Initial studies parsed entities from a natu-



2-Hop Neighbors Graph Visualization

recipe

Corn Frittata With Cheese

 fatcals: 165.0
« fatper100g: 7.05

Title: Corn Frittata With Cheese

Nutrition: Ingredients:
* calories: 282.2 * Eggs
* cholesterol: 0.438 * fresh basil

» frozen whole kernel corn
* greenonions

» fiber:1.9 * olive oil
* protein: 18.0 * romatomatoes
* Salt per 100g: 0.09 » shredded cheddar cheese

* saturated fat: 6.6 * zucchini
* saturates per 100g: 2.529

* serving size: 261.0

* servings perrecipe": 4.0

* recipe sodium: 0.234

e sugar:2.3

* sugars per 100g: 0.881

* total carbohydrates: 12.2

* totalfat: 18.4

Figure 2: FoodKG Recipe sample: left panel shows a 2-hop KG subgraph for the recipe node shown on the right.

ral language question and generated SPARQL queries from
templates to retrieve the answer (Shirai et al. 2021; Hauss-
mann et al. 2019; Rangel et al. 2024). Another line of re-
search focuses on leveraging graph neural networks (GNNs)
or LSTM-based embeddings to formulate information re-
trieval based approaches (Chen et al. 2021; Gao et al. 2022;
Forouzandeh et al. 2024; He et al. 2024). The recent ad-
vancements in integration of KG’s with LLMs attracted their
use for improving KGQA (Xu et al. 2024; Eppalapally et al.
2024; Hou and Zhang 2024; Ma et al. 2024). Several method
explored the integration of KG to enhance LLM for reason-
ing (Luo et al. 2023; Sun et al. 2023), improving chat-bots
for better customer service (Xu et al. 2024), product recom-
mendations (Eppalapally et al. 2024), and food related tasks
(Achiam et al. 2023; Min et al. 2022; Hou and Zhang 2024;
Ma et al. 2024). FoodGPT (Qi et al. 2023) studies incre-
mental pre-training to boost LLMs performance with KG in
food domain. While numerous KGs and LLMs have been
applied to food-related tasks, the full potential of combining
KGs and LLMs in food science remains underexplored (Min
et al. 2022; Ma et al. 2024). This represents a critical avenue
for further research.

Food Recommendation as KGQA

We aim to develop a personalized food recommendation
system by leveraging the food knowledge graph (FoodKG)
(Haussmann et al. 2019) as contextual information, com-
bined with a large language model serving as the gen-
erative recommendation engine. We hypothesize that en-
hancing LLMs with FoodKG for food recommendations
will achieve superior performance compared to embedding-
based retrieval methods. Therefore, we propose utilizing
recipe subgraphs from FoodKG as context and LLMs to
recommend recipes through a generative approach (see Fig-
ure 2 that shows an example KG subgraph, and the recipe
text for the achor recipe node). We train the LLM to bet-
ter understand the context in regards to the given question.
During inference, given a natural language question, we use
semantic parsing to extract the entities and then generate
SPARQL queries to extract the relevant recipe subgraphs
from the FoodKG. These subgraphs are input to LLM as

context along with the question. The LLM selects the recipes
from the context that meet the constraints in the question.

To this end, we leverage FoodKG to model a recipe rec-
ommendation system as a constraint question answering
problem. We start with base (template) questions then in-
corporate ingredient constraints, i.e., the recipe should con-
tain the given list of ingredients. To understand the nega-
tive constraints, we also add constraints that the recipe must
not contain a given list of ingredients. For example Recipe
should contain Spinach and Butter but must not have Nuts.
Similarly, we also add constraint on nutritional values such
as recipe with more than 2 gram proteins and less than 500
calories. Finally, we combine the base question with con-
straints to generate final constraint question. The resultant
recipes after applying all filters on the KG are considered as
ground truth recipes that meet the constraint in the question.
An example final question could be: Question: What very-
low-carbs recipes use egg yolks, nutmeg, lemon wedges, blue
cheese, orange juice and avoid ground red pepper, green
onions, dried sweet basil leaves, and have cholesterol no
more than 0.21? More examples of base questions, con-
straints and final detailed questions can be found in Table
1. Subsequently, we generate a benchmark question answer
dataset for food recommendations.

Dataset Generation

We curated a large benchmark dataset using FoodKG by
leveraging the different components of recipes for con-
strained question answer generation. Each sample in our
dataset contains a user query, ingredient preferences, nutri-
tional constraints and ground truth answers. We combine the
user query, ingredient preferences and nutritional constraints
to generate input questions for the model. The ground truth
answers are those recipes that satisfy all the preferences
and constraints in the input question. To generate each sam-
ple, we used recipe attributes such as tags, ingredients, nu-
tritional values. The examples of tags could be American,
Healthy, Easy to cook, etc. Nutritional values include con-
tents of calories, fat, protein, sugar, and so on.

FoodKG contains 1 Million recipes with ingredients, nu-
tritional information and tags, organized into 65 Million



Base question: Give me {tag} recipes with {ingredients}
and without {not_have_ingredients}

Template constraints: have {nutrition} no more than
{limit}, {nutrition} within range {limit}

Personal preferences: tag: low-protein
Likes: baking soda, tomato paste, green onions, ground

cinnamon, flour
Dislikes: orange slice, sweet rice flour, yellow cake mix
Nutrition constraints: cholesterol no more than 0.07, salt
per 100g (0.14, 0.26)

Question: Give me low-protein recipes with baking soda,
tomato paste, green onions, ground cinnamon, flour and
without orange slice, sweet rice flour, yellow cake mix, and
have cholesterol no more than 0.07, salt per 100g within
range (0.14, 0.26).

Answer: Aunt Peg§ Banana Bread, Sweet Potato Casserole
With Praline Topping, Fresh Apricot Praline Butter.

Base question: What are the {tag} dishes that
contain  {ingredients} but do not contain
{not_have_ingredients}

Template constraints: have {nutrition} at least {limit},
and {nutrition} less than {limit}

Personal preferences: tag: vegetarian
Likes: margarine, frozen peas, shredded cheddar cheese,

baking soda, vinegar
Dislikes: cracked wheat, chili pepper, fresh pepper
Nutrition constraints: fiber at least 4.24, saturated fat less
than 6.49

Question: What are the top vegetarian recipes containing mar-
garine, frozen peas, shredded cheddar cheese, baking soda,
vinegar and excluding cracked wheat, chili pepper, fresh
pepper, and meeting the fiber at least 4.24, saturated fat less
than 6.49 condition?

Answer: B. B. King$§ German Chocolate Cake, Apple Bread,

Moms Raisin Rock Cookies

Table 1: Examples of constraints, corresponding questions, and relevant recipe names as ground truth answers. Ingredient
preferences specify whether certain ingredients should or should not be included in the recipes. Nutritional constraints are
numerical conditions applied to nutrient values, defined by limits such as less than, greater than, or within a specified range for

different nutrients.

triplets. Let ¢; be a tag in FoodKG, and R(t;) the set of
tagged recipes with tag t;, which form the potential con-
text for an LLM. Now, let I(¢;) be the set of ingredients
in R(t;), then we define I*(¢;) C I(t;) as the set of in-
gredients that the user likes to have and I~ (t;) C I(t;) as
the set of ingredients that user wants to avoid. Recipes that
satisfy all the constraints are considered as ground truth an-
swers or positive set of recipes R*(¢;) and the remaining
R~ (t;) = R(t;) — R™(t;) are considered as negative set of
recipes.

Generating personal preferences

To personalize the recommendation of recipes, individual-
ized information regarding a person’s likes, dislikes, and
other personal choices are important. This personalized data
can be leveraged to tailor food recommendations to align
more closely with the individual’s preferences. In this study,
we simulate the personalization by incorporating both ingre-
dient preferences and nutritional constraints that one may
wish to prioritize. This allows us to generate personalized
food recommendations that consider both taste preferences
and dietary needs.

Ingredient Preferences: We simulate a person’s ingre-
dient preferences by randomly sampling two mutually ex-
clusive sets of ingredients I (¢;) and I~ (¢;) from the list
of ingredients I(¢;) such that I (¢;) N I~ (t;) = 0. One
set I (t;) is treated as person’s preferred ingredients, while
the other set I~ (¢;) is considered as disliked ingredients that
one may wish to avoid in the recipes. This approach allows
us to model a person’s likes and dislikes of ingredients.

Nutritional constraints: To account for user preferences
related to nutrition, such as calorie intake, salt content, or
other dietary factors, we introduce nutritional constraints by
sampling nutrients and their limits. We also select one of
the three filters: ‘less than’, ‘greater than’, or ‘fall within a

defined range’. Moreover, during data generation, we want
few recipes as valid answers, therefore, we design nutritional
constraints such that there is a subset of recipes that meet the
constraints.

Let z; be the nutrient in a recipe. Then, let p(R(t;), z;)
and o(R(t;), z;) denote the mean and standard deviation of
nutrient z; in the set of tagged recipes R(t;), respectively.
To generate the nutritional constraints, first we randomly se-
lect one of the three filters: ‘less than’, ‘greater than’, or ‘fall
within a defined range’. Then, we define a threshold for the
nutrient x"7¢*" by sampling a random number in range of
w(R(tj), z;) £ 20(R(t;), ;) and apply the selected filters
(i.e., less than, greater than, or within two standard devia-
tions). Finally, all selected nutritional constraints along with
filters are combined with the base question. This approach
enhances the diversity of the questions, incorporating both
conditional logic and negations, which are crucial for gener-
ating more complex and realistic queries.

KGQA benchmark dataset

The simulated preferences and constraints are combined
with a user query to create a detailed question, which is then
fed into the LLM. The examples of base question, template
constraints, simulated nutritional limits and final detailed
questions are given in Table 1. Similar to (Chen et al. 2021),
we generated the base template queries with placeholders
for an individual’s ingredient preferences and dietary restric-
tions. These placeholders are replaced with their respective
values. The simulation of the preferences and constraints en-
sures that the generated questions are realistic and can yield
a few recipes as ground answer to the question, avoiding im-
possible requests. The recipes that meet all the conditions in
the detailed final question are considered as recommended
recipes.

We used FoodKG as our knowledge base, which contains



over 1 million recipes labeled with 490 unique tags with
each recipe potentially having multiple tags. For this dataset,
questions are generated using 15 health-related categories
such as dairy-free, low-fat, and high-fiber, leaving the re-
maining tags for potential future work. A full list of the tags
used for data generation can be found in Appendix . Notably,
the recipes associated with these 15 health-related tags also
include a total of 472 tags, covering the majority of the tags
in the FoodKG.

PFoodReq (Chen et al. 2021) KGQA (our)
Measure Train setq Test set Train set | Test set
Number of questions 4613 2305 62320 7790
Ground truth answer (min) 1 1 1 1
Ground truth answer (max) 296 178 1776 954
Ground truth answer (avg) 2.94 2.84 10.67 9.77
Tagged recipes (min) 2 2 7 7
Tagged recipes (max) 2486 2485 4445 4445
Tagged recipes (avg) 408.4 377.99 3167 3163

Table 2: Dataset Statistics: This table shows the number of
questions, along with the corresponding number of recipes
in the set of tagged recipes R(t;) as overall context and
ground truth answer R (¢;).

Overall, our dataset contains 77,900 question-answer
pairs, split into 80%, 10%, and 10% for training, valida-
tion, and testing, respectively. The test set includes 7,790
questions where the relevant context for each question could
encompass all tagged recipes. Table 2 shows that the num-
ber of recipes in ground truth R*(¢;) vary from 1 to 954
whereas recipes relevant to entities R(t;) in questions (with-
out constraints) range from 7 to as many as 4445, showing
the complexity and variety of questions.

Food recommendation system

We formulate personalized food recommendation as LLM
based constrained question answering over the food knowl-
edge graph. Given a natural language user query, our sys-
tem extracts entities from the query and retrieves the rele-
vant subgraph from KG. The LLM is trained to identify the
recipes from the KG subgraph that satisfy the user query.
Overall, over system consists of three modules: retrieval of
subgraphs from KG, finetuning the model on KGQA bench-
mark and finally model inference the over KG for generating
the response as recommended recipes.

Subgraph Retrieval

Given natural language question, the first step is to parse
entities such as tags and then generate SPARQL query to re-
trieve subgraphs from KG. For now, we assume that each
question is based on only one tag which also belong to
known set of tags. Each recipe graph contains the name
of the dish, list of ingredients and nutritional information.
The recipe subgraphs are serialized into a text sequence
and given as context to the LLM. Note that there could be
more than 1,000 tagged recipes as subgraphs returned by
SPARQL query whereas LLMs accept only a limited se-
quence length. Therefore, it is not feasible to pass the entire
set of tagged recipes R(t;) as a context to the LLM in a sin-

gle call. Instead, we provide a subset of recipes as context
during each forward pass of the LLM.

Model Optimization

We want the model to be able to select the recipes that meet
the constraints in the question, so during training we sam-
ple K recipe subgraphs from R(t;) as the context set C;
for a single forward pass. Note that C'; may contain recipes
from R*(¢;) and R~ (t;) sets, but dataset statistics in Ta-
ble 2 show that |[R~(t;)| > |R™(t;)], therefore in practice
we sample at most K /2 positive recipes from R*(¢;) and
the remaining from R~ (¢;) and combine both to get context
set C';. The recipes sampled from R (¢;) are considered as
ground truth answer Y. This allows the model to learn to
select from vast distribution of context (positive or negative
recipes). The model was trained on standard cross-entropy
loss which is defined as.

Lep = CE(p(Y),p(Y)) )
Where, p(Y') is probability of ground truth recipes tokens

as one hot vector and p(Y") is the predicted probability of the
recipe tokens generated by the model.

Inference over KG

As discussed above, all tagged recipes R(t;) could poten-
tially serve as the overall context for a question generated
for a tag t;. Dataset statistics in Table 2 indicate that the
maximum number of tagged recipes for a tag ¢; can reach
up to 4,445, resulting in a total token count significantly ex-
ceeding the model’s sequence length, which may also lead
to GPU memory overflow. Therefore, similar to the training,
we can pass limited number of recipe subgraphs as context
during each call to the LLM. We iterate over all the sub-
graphs by passing a subset of subgraphs as context to LLM
along with question and combine the answers from multiple
calls to LLM to generate the final response. This approach
allows us to perform inference and evaluate the model on
variable number of recipe subgraphs.

Experiments

We used a generative model where we iterate over the sub-
set of subgraphs as context to the LLM and the LLM se-
lects recipes that satisfy the constrains in questions. Fi-
nally, we combine answers from multiple calls to the
LLM as final answer. Unlike retrieval methods where or-
der of the retrieved recipe matters, our setup is inher-
ently order agnostic. We report performance on standard
retrieval metrics such as accuracy, mean average preci-
sion (mAP), overall precision, recall and F1 formally de-
fined in Appendix . All the experiments were conducted on
four NVIDIA RTX A6000 GPUs. For baseline comparison,
we select several open source LLMs with 10B parameters
based on their performance reported on Huggingface open
LLM leader board (https://huggingface.co/spaces/open-1lm-
leaderboard/open_llm_leaderboard; Oct 1, 2024). These in-
clude internLM2 (Cai et al. 2024), Mistral (Jiang et al.
2023), Llama series (Llama-2 (Touvron et al. 2023),
Llama3.1 (Meta 2024)) and Phi series (Phi-2 (Javaheripi
et al. 2023), Phi-3-mini (Abdin et al. 2024)).



Model Model Size | Sequence Length Acc mAP P R F1
internLM?2 7B 4k 5.55 0.06 0.024 | 0.055 | 0.034
Mistral* 7B 4k 55.82 | 0214 | 0.536 | 0.558 | 0.547
Phi-2 2.7B 1K 37.77 | 0271 | 0.084 | 0378 | 0.137
Llama-2 7B 4k 62.72 | 0.557 | 0.825 | 0.627 | 0.713
Llama-3.1 8B 4k 40.58 | 0.146 0.28 0.406 | 0.332
Phi-3-mini-4K 3.8B 4K 4.4 0.047 | 0.192 | 0.044 | 0.071
Phi-3-mini-128K 3.8B 16K 27.81 | 0275 | 0.778 | 0.278 0.41
Our 3.8B 16K 96.83 0.96 0.978 | 0.969 | 0.973

Table 3: KGQA test set: Our model (Phi-3-mini-128K fine-tuned on 16K sequence length) vs. pre-trained LLMs.

Results on our KGQA benchmark

Open source LLMs: Table 3 shows the performance
on recent state-of-the-art LLMs. Despite internLM2 and
Llama-3.1 claim about out performance on several bench-
marks, both failed to understand the complex numerical con-
straints in KGQA benchmark questions. On the other hand,
Llama-2 seems to perform better. The capability of handing
larger sequence length by Phi-3-mini-128K helps it perform
better than Phi-3-mini-4K, which also aligns with their per-
formance on huggingface open LLM leaderboard.

We selected Phi-3-mini-128K for finetuning on our
KGQA benchmark dataset due to its compact size and rel-
atively strong performance. Given the constraints of limited
GPU memory, we reduced the sequence length to 16K for
training. During testing, the model performed equally well
when 4K or 16K sequence length was selected as evident
from Table 4. The primary distinction was that a 4K se-
quence length accommodated fewer subgraphs in the con-
text compared to a 16K sequence length. The evaluation of
our model on KGQA test set shown in Table 3 clearly im-
proves 60 points on accuracy compared to Phi-3-mini-128K.
Compared to Mistral and Llama-2, our model demonstrates
higher scores on all metrics. Specifically, our model is al-
most 26 points better than Llama-2 on F1 score. Overall,
our model significantly outperforms the other models.

Sequence Length | Acc | mAP P R F1 TP FP FN
4K 87.0 | 0.997 | 0.994 | 0.875 | 0.931 | 118263 | 761 | 16898
16K 87.0 | 0.997 | 0.994 | 0.875 | 0.931 | 118310 | 742 | 16874

Table 4: Results on the KGQA test set when using the full
context graph. The LLM is iteratively provided with subset
of recipe subgraphs. LLM select the relevant recipes from
given context during each iteration and the final answer is
formed by combining all the selected recipes at the end of
the process.

Impact of recipe types: Recipes in FoodKG are tagged
with one or more tags based on the nature of the dish. We
evaluated all models on questions related to various types
of tagged recipes and report F1 scores in Figure 3 and Ta-
ble 10 (see Appendix) for our model versus baseline LLMs.
Compared to other models, our model consistently showed
higher F1 scores than others. For dairy-free recipes, Llama-2
(overall second best) and our model could recommend few
correct recipes as evident by the F1 scores. Table 5 shows
performance of our model on different types of recipes based

Tag Acc mAP P R F1

lactose 91.64 | 0.898 | 0.955 | 0916 | 0.935
vegan 97.49 | 0.964 | 0.9838 | 0.975 | 0.981
vegetarian 97.58 | 0.966 | 0.987 | 0.976 | 0.981
dairy-free 66.67 | 0.667 | 0.667 | 0.667 | 0.667
gluten-free 77.4 0922 | 0992 | 0.779 | 0.873
nut-free 1.0 1.0 0.909 1.0 0.952
egg-free 95.13 | 0.939 | 0.982 | 0.951 | 0.966
low-carb 96.52 | 0.952 | 0.983 | 0.965 | 0.974
low-fat 96.55 | 0.964 | 0.956 | 0.966 | 0.961
low-protein 98.08 | 0.981 | 0.988 | 0.981 | 0.984
low-sodium 98.17 | 0.982 | 0.978 | 0.982 0.98
low-cholesterol | 95.07 | 0.924 0.98 0.951 | 0.965
high-protein 96.72 | 0.992 | 0.944 | 0.967 | 0.956
high-calcium 95.28 | 0.937 | 0.981 | 0.953 | 0.967
high-fiber 93.33 | 0.938 1.0 0.933 | 0.966

Table 5: Results on KGQA test set per tag

on associated tags. We can see that for most of the tags, our
model shows similar scores except dairy-free and gluten-
free, suggesting that the model has generalized across vari-
ous types of dishes. Relatively lower accuracy and F1 scores
for dairy-free recipes is due to fewer samples in training
data.

context size | Acc | mAP P R F1 TP FP FN
6 93.97 | 0.888 | 0.881 | 0.94 | 091 | 19637 | 2641 | 1259

10 75.53 | 0.74 | 0.903 | 0.755 | 0.823 | 23323 | 2496 | 7558
20 70.22 | 0.717 | 0.91 | 0.702 | 0.793 | 30483 | 3010 | 12926
40 68.6 | 0.718 | 0.88 | 0.686 | 0.771 | 34949 | 4752 | 15996
100 65.38 | 0.714 | 0.898 | 0.654 | 0.757 | 39109 | 4425 | 20706

Table 6: KGQA Results: Impact of the size of negative con-
text. By increasing the number of graphs in context (i.e.,
negative graphs in context), the performance goes down
probably due to increase in false positives compared true
positives.

Impact of context size: The context for each question
consists of relevant subgraphs retrieved from the FoodKG,
which include both positive and negative recipes. The num-
ber of retrieved subgraphs or tagged recipes may vary for
each question. The model may become vulnerable to ac-
cepting false positives when number of negative recipes in-
creases in the context. To evaluate this, we limited the max-
imum number recipes included in the context to K by sam-
pling at most K /2 recipe subgraphs from each positive set
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Figure 3: F1 score for different models on various types of recipes.

of tagged recipes R (¢;) and negative set of tagged recipes
R~ (t;). Table 6 demonstrates that increasing the size of con-
text has negative impact on overall performance. This can
be attributed to to the increase in negative subgraphs relative
to positives, which results in more false positives and false
negatives even though true positives also increase.

Model Acc | mAP P R F1

P-MatchNN - 0.455 - 0.451 | 0.412
pFoodReq - 0.627 - 0.618 | 0.637
Llama-2-7B | 49.83 | 0.322 | 0.204 | 0.498 | 0.289
Our 74.5 | 0.769 | 0.825 | 0.885 | 0.854

Table 7: PFoodReq Results: Our model compared to base-
line shows better scores.

Results on PFoodReq benchmark

State of the art: Due to close resemblance of our bench-
mark with PFoodReq (Chen et al. 2021), we compare our ap-
proach on PFoodReq dataset (See Table 2 for the statistics).
Table 7 shows that compared to the previous methods, our
method using LLMs with KGs outperforms with a margin
of 0.14 points on mAP and 0.22 points on F1 metrics. This
suggests that our method by utilizing the power of genera-
tive modeling grounded in KG facts generalizes better and
outperforms the classical embedding based methods.

context size | Acc | mAP P R F1 TP FP FN
M 74.5 1 0.769 | 0.825 | 0.885 | 0.854 | 10380 | 2196 | 1349
6 98.5 1 0.989 | 0.99 | 0.995 | 0.993 | 7032 68 38
10 62.9 | 0.644 | 0.675 | 0.903 | 0.772 | 7682 | 3271 | 726
20 62.4 | 0.63 | 0.666 | 0.907 | 0.768 | 8104 | 4061 | 832
40 50.3 | 0.482 | 0.524 | 0.927 | 0.696 | 9612 | 8763 | 758

Table 8: PFoodReq Results: Impact of the size of negative
context. M: When all R*(¢;) and an equal number sub-
graphs from R~ (¢;) are taken as potential context.

Impact of context size: Table 8§ demonstrates the impact
of context size for PFoodReq benchmark dataset on our
model. Consistent with findings in KGQA, an increase in
context size leads to a decline in performance, which is as-
sociated with a increase in number of false positives. This

suggests that if the context has more number of negative sub-
graphs, the model may select recipes that do not fully meet
all the specified constraints.

Conclusion

This paper presents a food recommendation system that
combines the power of KGs with LLMs in a question an-
swering framework. We also create a large-scale QA bench-
mark dataset using FoodKG. After evaluation of several
open source LLMs, we selected Phi-3-mini-128K to adapt
it for food recommendations by training it to understand
the subgraph from FoodKG to answering the complex con-
strained questions regarding personalized food recommen-
dations. The evaluation results show that our model out-
performs the baseline models. In future, we plan to im-
prove tag identification and SPARQL query generation em-
ploying Chain-of-thoughts reasoning with LLMs. Incorpo-
rating ingredients substitution, person’s health information
and cultural preferences could could further improve the
system’s ability. Finally, combining food recommendation
system and recipe generation would not only suggest suit-
able recipes but also generate customized recipes, offering a
seamless solution for meal planning and cooking.

Limitations

* The recipes recommended by our food recommenda-
tion systems rely on the recipe subgraphs retrieved from
FoodKG (Haussmann et al. 2019). The subgraphs serve
as context for LLM for suggesting the recipes relevant to
the user queries. Therefore our system may not suggest
accurate recipe if incorrect context information is pro-
vided.

* Our food recommendation system uses the nutritional in-
formation from FoodKG, whereas for a realist applica-
tion, the simulated nutritional constraints are assumed
to be provided by the user. While, our system can rec-
ommend sugar-free recipes, it may not accurately rec-
ommend correct recipes for a diabetic person. In other
words, our system do not directly establish the relation-
ship between person’s health conditions and the corre-
sponding dietary constraints. This capability is left for
future research.
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Appendix
Recipe tags
We selected recipes with the following tags for dataset gen-

eration, so that question answers pairs inherently focus on
health constraints.

dairy-free vegan vegetarian
gluten-free lactose nut-free
egg-free low-carb very-low-carbs
low-fat low-protein  low-sodium
low-cholesterol  high-protein  high-calcium
high-fiber healthy

Figure 4: Tags representing various dietary preferences and
nutritional constraints.

Dataset Details

Tag Tagged recipe | Train set | Test set
dairy-free 7 18 3
vegan 968 2287 314
vegetarian 3392 8142 979
gluten-free 565 1328 187
lactose 366 874 112
nut-free 45 107 13
egg-free 440 1078 124
low-carb 4239 10248 1244
very-low-carbs 1005 2411 288
low-fat 2202 5296 639
low-protein 3320 7944 1032
low-sodium 4445 10561 1407
low-cholesterol 3710 8990 1059
high-protein 690 1642 219
high-calcium 540 1318 162
high-fiber 33 76 8

Table 9: Our dataset: Number of tagged recipes for each tag
and questions for each tag in test set.

Foundational Models

Here we provide a list of baseline LLMs we compare with
in our empirical evaluation.

internLLM2 (Cai et al. 2024) is the second generation in-
ternLM model, trained to capture long-term dependencies.
It outperforms on 30 benchmarks in long context modeling
and open-ended subjective evaluations.

Mistral (Jiang et al. 2023) is engineered for superior per-
formance and efficiency. It is the second best model on Hug-
ging face leader board (Dec 27, 2023); its 7B model can out-
performs LLaMA-2 13B model.

LLama-2 (Touvron et al. 2023) is a collection of founda-
tion language models ranging from 7B to 70B. Due to pop-
ularity of llama series, we select Llama-2-7B model in our
study.

Llama-3.1 (Meta 2024) is a set of large scale very pow-
erful open source LLM that improves upon Llama-2, and is

comparable to the flagship models like GPT-4, GPT-40 and
Claude 3.5 Sonnet. Therefore, it became an obvious choice
for our study.

Phi-2 (Javaheripi et al. 2023) is a 2.7B parameter LLM
designed for efficient and high-performing natural language
processing tasks. It has demonstrated better performance
than LLaMA-2 (13B) and Mistral (7B) models on a range
of benchmark tasks, showcasing its effectiveness in various
NLP domains.

Phi-3 (Abdin et al. 2024) has improved over Phi-2; even
its mini version at 3.8B parameters outperforms several 7B
and 13B models. We employed Phi-3-mini-4k and Phi-3-
mini-128K in our study for their performance despite the
smaller size.

Metrics

We used standard retrieval metrics and provide their formal
definitions considering order agnostic evaluation of all the
models. Let Y be a list of recipes as ground truth answer
and Y a list of recipes recommended by the model. Then,
we define true positive (TP), false positive (FP) and false
negative (FN) as follows:

TP=YNY
FP=Y -Y )
FN=Y -Y

Then, accuracy, precision (P), recall (R) and F1 scores are
computed as follows:

_ TP

Y|
_ TP
- |TP|+|FP|
__ |rP]
~ |TP|+|FN]|
_ 2PR
~ P+R

Additional Results

Table 10 shows performance of open sources LLMs and our
model on KGQA benchmark for recipes tagged with few
tags including lactose, vegan, vegetarian, gluten-free and
nut-free.

Ace

3)

F1




Model Tag Acc | mAP P R F1
internLM?2 1.67 | 0.015 | 0.008 | 0.017 | 0.011
Mistral 36.79 | 0.14 | 0.538 | 0.368 | 0.437
Llama-2 51.42 | 0477 | 0.838 | 0.514 | 0.637
Llama-3.1 lactose 32.08 | 0.152 | 0.233 | 0.321 | 0.27
Phi-3-mini-128K 21.74 1 0.202 | 0.812 | 0.217 | 0.343
Our 91.64 | 0.898 | 0.955 | 0.916 | 0.935
internLM?2 7.89 | 0.09 | 0.038 | 0.0079 | 0.051
Mistral 49.16 | 0.201 | 0.549 | 0.492 | 0.519
Llama-2 70.97 | 0.669 | 0.885 | 0.71 | 0.788
Llama-3.1 vegan 4295 | 0.161 | 0.296 | 0.43 | 0.351
Phi-3-mini-128K 42.11 | 0.404 | 0.873 | 0.421 | 0.568
Our 79.49 | 0.964 | 0.988 | 0.975 | 0.981
internLM?2 7.78 | 0.085 | 0.034 | 0.078 | 0.048
Mistral 52.01 | 0.201 | 0.531 | 0.52 | 0.526
Llama-2 70.84 | 0.639 | 0.856 | 0.708 | 0.775
Llama-3.1 vegetarian | 46.23 | 0.179 | 0.325 | 0.462 | 0.381
Phi-3-mini-128K 352 | 0.361 | 0.871 | 0.352 | 0.501
Our 97.58 | 0.966 | 0.987 | 0.976 | 0.981
internLM?2 5.85 | 0.062 | 0.027 | 0.058 | 0.037
Mistral* 67.31 | 0.26 | 0.581 | 0.673 | 0.624
Llama-2 60.94 | 0.559 | 0.87 | 0.609 | 0.717
Llama-3.1 gluten-free | 54.85 | 0.208 | 0.364 | 0.548 | 0.438
Phi-3-mini-128K 28.46 | 0.282 | 0.811 | 0.285 | 0.421
Our 95.13 | 0.939 | 0.982 | 0.951 | 0.966
internLM?2 6.67 | 0.103 | 0.019 | 0.067 | 0.029
Mistral* 59.09 | 0.224 | 0.542 | 0.591 | 0.565
Llama-2 68.18 | 0.628 | 0.833 | 0.682 | 0.75
Llama-3.1 nut-free | 45.45 | 0.243 | 0.345 | 0.455 | 0.392
Phi-3-mini-128K 36.67 | 0.385 | 0.786 | 0.367 0.5
Our 100 1.0 | 0.909 1.0 0.952

Table 10: Results on KGQA test set for reported for several tags. Overall, over model performs for questions relevant to the
tags.



