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Abstract. Advancements in deep learning techniques caused a paradigm
shift in feature extraction for image perception from handcrafted meth-
ods to deep methods. However, these deep features if learned through
unsupervised methods bear large memory footprints and are prone to
the curse of dimensionality. Traditional feature reduction schemes in-
volving aggregation of these learned visual descriptors may lead to loss of
essential information necessary for their obvious discrimination. There-
fore, this research studies various feature reduction techniques for re-
mote sensing image features. We also propose a deep discriminative net-
work with dimensionality reduction (DAE-DR), exploiting stacked au-
toencoder based solution to abbreviate unsupervised features without
significantly affecting their discriminative and regenerative characteris-
tics. It is observed that the spatial dimensions encoded in the feature
vector are more important than increasing the number of network fil-
ters for efficient image reconstruction. Validation of our approach has
been tested for remote sensing image retrieval (RSIR) problem. Results
demonstrate that our proposed network achieves 25 times reduction in
feature size with only 0.8 times depletion of retrieval score.

Keywords: Unsupervised features · Remote sensing image retrieval (RSIR)
· Deep Learning, · Deep Features

1 Introduction

Developments in imaging technology resulted in the extremely large datasets,
however, learning any useful information from these datasets, particularly using
modern deep learning architectures, require large amount of annotations. Al-
though initiatives such as ImageNet challenge and those related to autonomous
vehicles provide such annotated data, they are only limited to street level im-
agery. In many areas, such as remote sensing, there is a dearth of annotated
datasets [6]. Thus, there is a dire need of a method that allows unsupervised
learning of features that are distinctive, posses reconstruction capability and are
effectively compact.
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Fig. 1: DAE-DR framework in which the feature learning and reduction step is
explained in the upper part of the figure while the process of discriminating
reduced features set is presented in the lower part of the figure.

To cultivate distinctiveness among unsupervised features, we adopted dis-
criminative autoencoder network inspired from Generative Adverserial Networks
(GANs) [4] and Siamese Networks [8] in our previous work [11]. However, these
learned features are high dimensional with large memory footprints which re-
quire huge storage capacity for big data applications, such as remote sensing
image retrieval.

Dimensionality reduction could be considered as one of the possible solu-
tions, employed through feature aggregation (by using global sum-pooling, max-
pooling, and scaled sum-pooling) or selection of kernels from the activations of
the learned network [5, 12]. However, these methods have two important lim-
itations. Firstly, theses methods fail to perform on features learned through
unsupervised learning approaches. Secondly, they require an unbounded set of
experiments still, they do not guarantee compact feature representation.

In our previous work we proposed a Discriminative Autoencoder (DAE) ar-
chitecture that takes high-dimensional features from the depth layer of autoen-
coder as an input and projects them onto a space that separates similar images
from non-similar images (see Fig. 1)[11]. This work demonstrates a step-wise pro-
cedure to abbreviate the features acquired through deep autoencoder network
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without significantly effecting their discriminative and regenerative characteris-
tics.

Our approach leverages from the fact that autoencoders with linear acti-
vation are mathematically equivalent to Linear Principle Component Analy-
sis (PCA) and those with non-linear activation (such as sigmoid) are equiv-
alent to non-linear PCA. To prove the efficacy, we evaluated our approach
on RSIR problem using benchmark datasets including University of Califor-
nia Merced Land Use/Land Cover (LandUse) [13] and High-resolution Satellite
scene (SatScene) [3] containing 2100 and 1050 images, respectively.

2 Preliminaries

2.1 Discriminative Autoencoder (DAE)

For the dataset X containing n images such that X = {x1, x2, · · · , xn}, our
network transforms the given input image, xi onto the feature space generating
feature fi through deep learning network fi = hθ(xi) = r(Wxi + b).

Similarly, it then reconstructs the output image x
′

i from the input feature

fi using x
′
i = gθ′ (fi) = t(W

′
fi + b

′
). Where, h and g are encoder and decoder

functions, respectively. Similarly θ = {W, b} are encoder parameters and θ
′

=
{W ′

, b
′} are decoder parameters for r and t being non-linear activation functions.

By employing the mean squared error L(xi, x
′
i) = ‖xi − x

′
i‖2 as loss function,

we optimize the parameters θ and θ
′

as follows:

θ∗, θ
′∗ = arg min

θ,θ′

1

N

N∑
i=1

L(xi, x
′

i) (1)

A pair of these image features (fq, ft) are then concatenated and given to the

discriminator network y
′

= d((fq, ft), θd) to compute the Bernoulli probabilities

(match or unmatched), where d is a discriminator model and y
′

is classifica-
tion probability. The parameters of d are optimized by using cross entropy loss
function Ld(y, y

′
) = −

∑
q,t ylogy

′
as given in equation (2).

θ∗d = arg min
θd

∑
q,t

[L(yi, d(hθ(xq) ∗ hθ(xt))] (2)

In our previous work [11], it has been demonstrated that the features f learned
using residual autoencoder coupled with the discriminative metric learning scheme
outperforms supervised features based approaches. However, these features are
prone to the curse of dimensionality.

2.2 Autoencoder vs PCA Relationship

We aim to obtain a transformation Φ that transform f to subspace f̃ as f̃ =
Φθ̃(f, W̃ ) and then from f̃ we aim to reconstruct the output x̃

′
as x̃

′
= gθ̃(f̃) =
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(a) (b) (c) (d) (e)

Fig. 2: Visualization of reconstructed images from (a) Input (b) 8 × 8 × 512
dimensional features of DAE (c) 1063 PCA basis (d) 1 × 1 × 1024 dimensional
encoder features (DAE-DR 1D) (e) 8 × 8 × 20 dimensional encoder features
(DAE-DR 2D).

t(W̃ f̃ + b̃) and compute similarity as ỹ
′

= d({f̃q, f̃t}, θ̃d). f̃ should be such that
it is a compact representation of f without any significant loss of information.
In order to introduce energy conservation the transform should also be unitary
i.e.

‖f̃‖2 = f̃H f̃ = Φθ̃(f, W̃ )HΦθ̃(f, W̃ ) = ‖f‖2 (3)

where fH is the hermitian conjugate of f . One such unitary transform is Eigen
matrix of auto-correlation Rff = ffH which form the basis of Principle Compo-
nent Analysis (PCA). In order to learn the optimal feature vector, we exploited
the relationship between PCA and auto-encoder basis. Mathematically, a linear
autoencoder is defined as:

f1 = W1 ×X + b1 (4a)

X̃ = W2 × f1 + b2 (4b)

Where, W1 and W2 are weights, X is input and X̃ is reconstructed output. Mini-
mizing the mean square cost function (equation 5) with respect to W1,W2, b1, b2,
the problem reduces to optimization with respect toW2 only, as given in equation
(6).

minW1,W2,b1,b2 = ‖X − (W2(W1X + b1) + b2)‖2 (5)

minW2
= ‖X∗ −W2W

†
2X
∗‖2 (6)

Where, X∗ is obtained by subtracting mean image from each image in data as
X∗ = X−x̄1TN . Thus, by singular decomposition of W2, it can be proven that the
singular vectors of W2 are actually the principle components of X. Consequently,
PCA is equivalent to linear autoencoder whereas typical deep neural network
based autoencoder with non-linear activation functions would be analogous to
non-linear version of the PCA [2]. Therefore, the deep CNN autoencoder would
learn feature space much better than PCA where PCA would help us to compute
the optimal dimension of the space.
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3 Methodology

3.1 Dimensionality Reduction in DAE via PCA

PCA helps to find the optimal dimension of space spanned by data but the
challenge is the auto-correlation matrix which is computationally expensive. So,
instead of computing f as f = ΦHx where Φ = ξ(RXX), and ξ(.) returns the
Eigen vectors, we compute Φ as Φ = Fξ(RFHF ) (using Sirovich and Kirby
method [10]), i.e. by computing Eigen vectors of inner product of depth features
instead of raw images, where F = {f1, f2, · · · }. f̃ is then computed as:

f̃ = ΦHf (7)

Therefore, we compute the auto-correlation RF̃H F̃ of f̃ to identify the basis
vectors that contain the maximum amount of energy. By reducing the feature
dimension using PCA, from analysis of DAE features (32768 dimensions) on
LandUse dataset, it has been found that 95% of the information lies in only
1063 principle components.

3.2 Dimensionality Reduction via DAE-DR Network

We modified our existing DAE architecture to DAE-DR network to learn the
features with compact dimensions. The following three ways demonstrate the
achieved modification for conversion of features from DAE to DAE-DR.

Pruning spatial dimensions of filters. By the introduction of 3 addi-
tional residual blocks in autoencoder, spatial dimension is reduced to 1×1 while
increasing the number of filters to 1024, resulting in a 1D fine-grained feature
vector (DAE-DR 1D). Nonetheless, as compared to PCA neither regeneration
nor retrieval score were encouraging. It is quite obvious from Fig. 2(d) that
reduction of spatial dimension of activation’s results in loss of structural infor-
mation and outputs a degraded reconstructed image, hence, confirming the idea
presented in [11].

Pruning temporal dimensions of filters. Filters could also be pruned by
adapting “Try and learn” learning approach [7], converting DAE to DAE-DR.
However, this method takes a lot of training time which exponentially increases

Table 1: Regeneration loss: Averaged MSE on test set where training hyper-
parameters were same for all models. PSNR averaged over 21 classes of LandUse.

Model/Scheme Feature Size MSE Loss PSNR (dB)

DAE [11] (8, 8, 512) 97.7 29.89

DAE (PCA) 1280 1114.34 6.150

DAE-DR 1D (1, 1, 1024) 2179.32 16.541

DAE-DR 2D (8, 8, 20) 636 21.192
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Fig. 3: Qualitative evaluation of RSIR for harbour, building, intersection, and
forest class from LandUse with query image (on the left most side) and its
respective first ten retrieved images in each row. It also includes some misclas-
sification results for intersection class.

with the complexity of network. Another way is to introduce a stack of layers
which reduces the dimensions depth wise while keeping the spatial dimensions
unchanged throughout. This technique ensures that the structural information
is stored in the spatial dimension. However, the addition of depth in the network
architecture produces a blurred regeneration.

Modification of existing DAE network. Another way is to modify the
hidden layers of the original autoencoder network by manipulating the number of
filters to produce the desired dimensional features. This approach yields the 2D
compact features (DAE-DR 2D) with significant improvement in reconstruction
as illustrated in Fig. 2(e).

The discriminator network for each of the three scenarios mentioned above
has been modified in such a way that it accommodates the input feature dimen-
sion, preserving the overall architecture of the network.

4 Results and Discussion

4.1 Training and Evaluation

In order to evaluate the performance of reduced features with our previous re-
sults, all the training hyper-parameters were maintained as discussed in [11].
Data augmentation enabled the discriminator network to be robust to scaling,
illumination and transnational invariances. For evaluation of all the approaches
proposed in section 3, standard metrics discussed in [9] for remote sensing image
matching were computed and a brief analysis has been provided in this section.

4.2 Analysis of Image Reconstruction

We trained three variants of auto-encoder networks and compared the regener-
ated images with [11]. Qualitative visual results demonstrated in Fig. 2 show
that the reconstruction of DAE-DR 2D features is smoother than reconstruction
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Table 2: Comparative evaluation of our proposed approach for feature dimension
reduction where it should be noted that despite having smaller feature size, our
approach outperform hand-crafted features and is comparable with supervised
deep features.

Feature Type Features Feature
Size

ANMRR↓

LandUse Dataset
Hand- LBP RGB [9] 54 0.751
crafted SIFT (VLAD) [14] 25600 0.649

SIFT (FV) [9] 40960 0.639

Deep- NetVLAD [1] 4096 0.406
supervised SatResNet-50 [9] 2048 0.239

Deep- DAE 32768 0.090
Unsuper- DAE (PCA) 1063 0.591
vised DAE-DR 1D 1024 0.495

DAE-DR 2D 1280 0.417

SatScene Dataset
Hand- LBP RGB [9] 54 0.664
crafted SIFT (VLAD) [14] 25600 0.649

SIFT (FV) [9] 40960 0.552

Deep- NetVLAD [1] 4060 0.371
supervised SatResNet-50 [9] 2048 0.207

Deep- DAE 32768 0.060
Unsuper- DAE (PCA) 804 0.473
vised DAE-DR FG 1D 1024 0.495

DAE-DR 2D 1280 0.50

from PCA basis vectors. Moreover, the spatial compression of features results in
the loss of structural information which degrades the reconstruction of the im-
age. For quantitative evaluation, we compare the reconstruction MSE loss and
Peak Signal to Noise Ration (PSNR). From Table 1, it can also be noticed that
the MSE loss of DAE-DR 1D feature is almost 20 times higher than the loss
of DAE. It can also be clearly analyzed that with the decrease in the feature
dimension, the quality of the reconstructed images is impaired. Hence, for an
effective reconstruction of the images local spatial information is crucial.

4.3 Analysis of Remote Sensing Image Matching

In order to evaluate the performance of the proposed approach, we provide quan-
titative as well as qualitative evaluation. Subjective evaluation by observing Fig.
3 clearly shows that the top 10 retrieved images mostly belong to the same class,
however, the retrieved images are sometimes confused with visually similar im-
ages of different classes e.g. forest with rivers and over-head with highway class.
For quantitative evaluation on metrics used for remote sensing image match-
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Fig. 4: Comparison between different feature sizes and their mAP scores for
LandUse dataset.

Fig. 5: Comparison between different feature sizes and their mAP scores for RS
SatScene dataset.

ing, we computed the values of Average Normalized Modified Retrieval Rank
(ANMRR) and Mean Average Precision (mAP) [9]. The previously proposed
unsupervised features outperforms supervised features in terms of lower AN-
MRR and higher mAP values which is evident from Table. 2 and a compar-
ative analysis of features represented in Fig. 4 and Fig. 5. In our case, even
with 25 times reduction in feature size, the performance is still comparable to
hand-crafted approaches and competing with other supervised approaches e.g.
NetVLAD [1]. As described in Table 2, the ANMRR value of DAE is compara-
tively better as compare to other DAE-DR unsupervised feature approaches for
LandUse dataset. Furthermore, our approach outperforms other hand-crafted
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approaches in terms of ANMRR and feature size. Such significant differences
in metric values demonstrates the effectiveness and superiority of our proposed
feature size for the problem of RSIR using unsupervised features. By exploiting
the local spatial and global semantic information, the proposed feature length
outperforms the baseline sizes.

5 Conclusion

This paper introduces a novel unsupervised dimensionality reduction network
after thoroughly studying some of the systematic methods of reducing unsuper-
vised feature dimension including PCA. Through experiments we have shown
that our proposed network DAE-DR 2D is able to achieve comparable content
based image retrieval results from a significantly smaller feature vector. While a
larger number of feature maps are required to obtain accurate retrieval results,
we show that by retraining the spatial information and discarding the redun-
dant filters it is possible to produce an optimal size image descriptor employing
discriminative autoencoder.
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